92. (Second problem in Cluster 2)

As explained in the first solution in this cluster, we take both angles θ_1 and θ_2 to be positive-valued.

(a) We first examine conservation of the y components of momentum.

$$0 = -m_1 v_{1f} \sin \theta_1 + m_2 v_{2f} \sin \theta_2$$

$$0 = -m_1 v_{1f} \sin 30^\circ + 2m_1 v_{2f} \sin \theta_2$$

Next, we examine conservation of the x components of momentum.

$$m_1 v_{1i} = m_1 v_{1f} \cos \theta_1 + m_2 v_{2f} \cos \theta_2$$

 $m_1(10.0 \text{ m/s}) = m_1 v_{1f} \cos 30^\circ + 2m_1 v_{2f} \cos \theta_2$

From the y equation, we obtain $v_{1f} = 4v_{2f} \sin \theta_2$; similarly, the x equation yields $20 - v_{1f}\sqrt{3} = 4v_{2f} \cos \theta_2$ with SI units understood (and the fact that $\cos 30^\circ = \sqrt{3}/2$ has been used). Squaring these two relations and adding them leads to

$$v_{1f}^{2}(1+3) - 40v_{1f}\sqrt{3} + 400 = 16v_{2f}^{2}\left(\sin^{2}\theta_{2} + \cos^{2}\theta_{2}\right)$$

and thus to

$$v_{2f}^2 = v_{1f}^2/4 - 5v_{1f}\sqrt{3}/2 + 25$$
.

(b) The plot $(v_{2f} \text{ versus } v_{1f})$ is shown below. The units for both axes are meters/second.

- (c) Simply from the total kinetic energy requirement that $K_i \geq K_f$ we see immediately that $v_{1f} \leq v_{1i} = 10.0 \text{ m/s}$ (where the upper bound represents the trivial case where it passes m_2 by completely with $K_i = K_f$), and with the more stringent requirement that it does strike m_2 and scatters at $\theta_1 = 30^{\circ}$ we again find that it is bounded by the $K_i = K_f$ case. The elastic collision scenario was worked in the previous problem with the result $v_{1f} = 9.34 \text{ m/s}$.
- (d) And we also found the result $v_{2f} = 2.52$ m/s.
- (e) As mentioned, this is an elastic collision.